Electrooptic
Modulation of
Laser Beawms

9.0 INTRODUCTION

In Chapter 1 we treated the propagation of electromagnetic waves in anisotropic
crystal media. It was shown how the properties of the propagating wave can be
determined from the index ellipsoid surface.

In this chapter we consider the problem of propagation of optical radiation in
crystals in the presence of an applied electric field. We find that in certain types of
crystals it is possible to effect a change in the index of refraction that is proportional
to the field. This is the linear electrooptic effect. It affords a convenient and widely
used means of controlling the intensity or phase of the propagating radiation. This
modulation is used in an ever expanding number of applications including: the
impression of information onto optical beams, Q-switching of lasers (Section
6.9) for generation of giant optical pulses, mode locking, and optical beam
deflection. Some of these applications will be discussed further in this chapter.
Modulation and deflection of laser beams by acoustic beams are considered in
Chapter 12.

9.1 ELECTROOPTIC EFFECT

In Chapter 1 we found that, given a direction in a crystal, in general two possible
linearly polarized modes exist: the so-called rays of propagation. Each mode pos-
sesses a unique direction of polarization (that is, direction of D) and a corresponding
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index of refraction (that is, a velocity of propagation). The mutually orthogonal
polarization directions and the indices of the two rays are found most easily by using
the index ellipsoid
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where the directions x, v, and z are the principal dielectric axes—that s, the directions
in the crystal along which D and E are parallel. The existence of two rays (one
*‘ordinary’’; the other *‘extraordinary’’) with different indices of refraction is called
birefringence.

The linear electrooptic effect is the change in the indices of the ordinary and
extraordinary rays that is caused by and is proportional to an applied electric field.
This effect exists only in crystals that do not possess inversion symmetry.' This
statement can be justified as follows: Assume that in a crystal possessing an inversion
symmetry, the application of an electric field E along some direction causes a change
An, = sE in the index, where s is a constant characterizing the linear electrooptic
effect. If the direction of the field is reversed, the change in the index is given by
An, = s(—E), but because of the inversion symmetry the two directions are phys-
ically equivalent, so An, = An,. This requires that s = —s, which is possible only
for s = 0, so no linear electrooptic effect can exist. The division of all crystal classes
into those that do and those that do not possess an inversion symmetry is an ele-
mentary consideration in crystallography and this information is widely tabulated
[1].

Since the propagation characteristics in crystals are fully described by means of
the index ellipsoid (9.1-1), the effect of an electric field on the propagation is ex-
pressed most conveniently by giving the changes in the constants 1/nZ, 1/n, 1/n? of
the index ellipsoid.

Following convention [1-2], we take the equation of the index ellipsoid in the
presence of an electric field as

1) 28 [Lhara L) 2w ald)n
n? A n> 2} n A © n 4}"
I 1
+2(—2) x:+2(—,,) xy=1 (9.1-2)
nJs n- Jo

If we choose x, y, and z to be parallel to the principal dielectric axes of the crystal,
then with zero applied field, Equation (9.1-2) must reduce to (9.1-1); therefore,

'If a crystal contains points (one in each unit cell) such that inversion (replacing each atom at r by one
at —r, with r being the position vector relative to the point) about any one of these points leaves the
crystal structure invariant, the crystal is said to possess inversion symmetry.
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(9.13)

where in the summation over j we use the convention 1 = x, 2 = y, 3 = z. Equation
(9.1-3) can be expressed in a matrix form as
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where, using the rules for matrix multiplication, we have, for example,
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E;

A (—-,) = rakE, + reEs + reks
nJe

(9.14)

The 6 X 3 matrix with elements r; is called the electrooptic tensor. We have shown
above that in crystals possessing an inversion symmetry (centrosymmetric), r; = 0.
The form, but not the magnitude, of the tensor r; can be derived from symmetry
considerations [1], which dictate which of the 18 »,; coefficients are zero, as well as
the relationships that exist between the remaining coefficients. In Table 9-1 we give
the form of the electrooptic tensor for all the noncentrosymmetric crystal classes.

The electrooptic coefficients of some crystals are given in Table 9-2.



Table 9-1 The Form of the Electrooptic Tensor for all Crystal Symmetry Classes
T, e T e AR T e e e e e L e e |

Symbols:

® zero element * equal nonzero elements

® nonzero element *o equal nonzero elements, but opposite in sign

The symbol at the upper left corner of each tensor is the conventional symmetry group
designation.
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Table 9-1 (continued)
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Table 9-1 (continued)
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Table 9-1 (continued)

6 6m?2 (m perpendicular to x, standard orientation)

L]
L]
L]
-
L]
L]

(m perpendicular to x,)

Example: The Electrooptic Effect in KH,PO,

Consider the specific example of a crystal of potassium dihydrogen phosphate
(KH,PO,), also known as KDP. The crystal has a fourfold axis of symmetry,” which
by strict convention is taken as the z (optic) axis, as well as two mutually orthogonal
twofold axes of symmetry that lie in the plane normal to z. These are designated as
the x and v axes. The symmetry group of this crystal is 42m.” Using Table 9-1, we
take the electrooptic tensor in the form of

0 0 0
0o 0 0
0o 0 0
L= 9.1-5
r"_f Fa 0 0 ( )
0 ryg O
0 0 res

so the only nonvanishing elements are r,; = rs; and rqs. Using (9.1-2), (9.1-4), and
(9.1-5), we obtain the equation of the index ellipsoid in the presence of a field E(E,,
E, E.) as

2
X ¥ z .2
=+ 5+ 5+ 2ruEyz + 2rgEpxz + 2rgsExy = |1 (9.1-6)
n, n, n, k
*That is, a rotation by 277/4 about this axis leaves the crystal structure invariant.

*The significance of the symmetry group symbols and a listing of most known crystals and their symmetry
groups is to be found in any basic book on crystallography.
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where the constants involved in the first three terms do not depend on the field and,
since the crystal is uniaxial, are taken as n, = n, = n,, n, = n.. We thus find tha
the application of an electric field causes the appearance of “‘mixed’ terms in the
equation of the index ellipsoid. These are the terms with xy, xz, and yz. This means
that the major axes of the ellipsoid, with a field applied, are no longer parallel to the
x, v. and 7 axes. It becomes necessary, then, to find the directions and magnitudes
of the new axes, in the presence of E, so that we may determine the effect of the
field on the propagation. To be specific we choose the direction of the applied field
parallel to the z axis, so (9.1-6) becomes

x*+y* 77

——== e oy = 1 (9.1)

o e

2

n

The problem is one of finding a new coordinate system—x', y', z'—in which the
equation of the ellipsoid (9.1-7) contains no mixed terms; that is, it is of the form

e o o ©.14)

x',y',and z' are then the directions of the major axes of the ellipsoid in the presence
of an external field applied parallel to z. The length of the major axes of the ellipsoid
is, according to (9.1-8), 2n,., 2n,,, and 2n_., and these will, in general, depend o
the applied field.

In the case of (9.1-7) it is clear from inspection that in order to put the equation
in a diagonal form we need to choose a coordinate system x', y’, z' where 2'is
parallel to z, and because of the symmetry of (9.1-7) in x and y, x" and y" are related
to x and y by a 45° rotation, as shown in Figure 9-1. The transformation relations
from x, y to x', ¥" are thus

x = x' cos 45° + y' sin 45°

= —x' sin 45° + y' cos 45°

=
|

e
ra

.
Figure 9-1 The x. v. and z axes of 42m crystals (such as KH,PO,) and the x', y', and z' axes,
where z is the fourfold optic axis and x and y are the twofold axes of crystals with 42n
symmetry.
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which, upon substitution in (9.1-7), yield

[ ; 2 1 2
(—q - rﬁ;‘E‘.) %<k (*: + !'r,aE:) yet
n, n;,

Equation (9.1-9) shows that x', y', and z are indeed the principal axes of the ellipsoid
when a field is applied along the z direction. According to (9.1-9), the length of the
x" axis of the ellipsoid is 2n,., where

=] (9.1-9)

Sl

1 |
— == — ek,
n; 2
which, assuming r¢;E, <€ n, * and using the differential relation dn = —(n"/2) d(1/n*),
gives for the change in n,., dn,, = —(n}/2)reE. so that
n
~

n, =n, + rﬁ_qE: (9]‘]0)

and, similarly,
Ty f'(,j;E_. (9. 1-1 ])

n,=n (9.1-12)

The electrooptic effect in the practical imortant 43m crystal class (GaAs, InP, ZnS)
is treated in detail in Appendix B.

The General Solution

We now consider the problem of optical propagation in a crystal in the presence of
an external dc field along an arbitrary direction.

The index ellipsoid with the dc field on is given by (9.1-2), which we reexpress
in the quadratic form

Soxexy=1 (9.1-13)

so that §;; = (1/n?),, 83, = S,3 = (1/n”),, and so on. We also use the convention
of summation over repeated indices. Our problem consists of finding the directions
and magnitudes of the principal axes of the ellipsoid (9.1-13).

Before proceeding we need remind ourselves of one basic result of vector cal-
culus. If the vector from the origin to a point (x,, x4, x3) on the ellipsoid (9.1-13) is
denoted by R(x, x,, x3), then the vector N with components

N‘ = S&l}. (9]']4)

is normal to the ellipsoid at R.
We next apply the last result to determine the directions and magnitudes of the
principal axes of the ellipsoid (9.1-13). Since the principal axes are normal to the
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ELECTROOQPTIC MODULATION OF LASER BEAMS

surface, we can determine their points of intersection (x,, x5, x3) with the ellipsoid
by requiring that at such points the radius vector be parallel to the normal, that is,

g = 8% (9.1-15)

where S is a constant independent of i.
Writing out (9.1-15) in component form for i = 1, 2, 3 gives

(Sip — 8xy + Sppxy + S13x3 =0
Soixy + (S22 — Sy + Sp3x3 =0 (9.1-16)
Sax; + Ssaxp + (833 — Sxs =0

(9.1-16) constitutes a system of three homogeneous equations for the unknowns x,,
x5, and x5, The condition for a nontrivial solution is that the determinant of the
coefficients vanishes, that is,

det[S; — $8,] = 0 ©.1-17)

This is a cubic equation in S. For real S;;, which is the case with lossless crystals,
the three roots S’, §”, and S” of (9.1-17) are real numbers. Having solved (9.1-17)
we use the three roots, one at a time, in (9.1-16) to solve, to within a multiplicative
constant, for the radius vector (x, x5, x3) to the point of intersection of the principal
axis with the ellipsoid. The first vector, obtained by using S’, is denoted by
X'(x}, x4, x%), the second by X"(x], x4, x%), and the third, obtained from §", is
X"(x"7, x%, x'%). Since the vectors satisfy (9.1-15), we have

Syx; = 8'x; (9.1-18)

_t

with a similar relation applying to x7 and x";.
It is an easy task to prove that the three principal axis vectors X', X", X" are
mutually orthogonal.
So far we have solved for the directions of the principal axes. Next we oblain
their magnitudes. We multiply (9.1-18) by x;

Syxix; = S'xjx; = §'X']? (9.1-19)

But the left side of (9.1-19) is, according to (9.1-13), equal to unity since the point
(x1, x5 x4) is on the ellipsoid (9.1-13). We can thus write
1

X' = ——

X=F
with similar results for X” and X". The lengths of the principal axes of the index
ellipsoid are thus 2(S") ™', 2(S")~ "2, and 2(S")~"". If we then express the equation
of the index ellipsoid in terms of a Cartesian coordinate system whose axes ar
parallel to X', X", and X", it becomes

S!xvz e S!!y!l + S""z*z = ] (9]'2[])

where the unit vectors x', y’, and z’ here are taken as parallel to X', X", and X",
respectively.
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The bit of mathematics starting with (9.1-13) is referred to as the transformation
of a quadratic form to a principal coordinate system. An equivalent description of
this transformation is by the term matrix diagonalization. The original matrix being
the ordered array of the coefficients S;

Sii Sz Sis
8= |5 S»n S (9.1-21)
Ss1 S3n S

The set of §', §”, and S”, which are the roots of (9.1-17), are the eigenvalues of the
matrix S, while the vectors X', X", and X" are its eigenvectors. The term matrix
diagonalization follows from the fact that if we express the quadric surface

Sgxx; = 1

whose coefficients form the matrix S of (9.1-21), in terms of a Cartesian coordinate
system whose axes are X', X", and X", it assumes the form (9.1-20) with the diagonal
form of the matrix S as

S0 0
S=|0 s o (9.1-22)
0 0 s

Example: Electrooptic Field in KH,PO,

To illustrate the method of matrix diagonalization, we use the example of
KH,PO,(KDP) with a dc field along the crystal z axis, which was solved above in
a somewhat less formal fashion.

The index ellipsoid is given by (9.1-7) as

X v’ 32
S+ 5+ 5+ 2raEay =1 (9.1-23)
My ng n.

The §,; matrix is thus

[ 1 )
- r 63E: 0
Ny
1
S;=|reB, 5 0 (9.1-24)
g
1
0 0 —
: "
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The eigenvalues are given according to (9.1-17) as the roots of the equation

1
== r(:}E: 0
ng

det | raE. —=— 8§ 0 (9.1-25)

which upon evaluation is

(i - S)[(l - S) - (rmE._.f] =0
n, 1y

The roots are

: 1
§'=—
n.
L ]
S = '_2— + rfi:‘E:
ny
" ]
§ == ruE, (9.1-26)

in agreement with (9.1-9). These roots are used, one at a time, in the equation
Syx; = 8x; i=1223 (9.1-27)

to obtain the eigenvectors. Starting with S’ we have

1 |
S —3)x trgExi=0
ng, n

1 1
resExy + (—1 = —3) x5 =0

ng on

(l = i) X, =0 (9.1:28)

n,o N

The first two equations above are satisfied by x| = 0 and x3 = 0, while the third is
satisfied by any value of x3. The eigenvector X' corresponding to S'(=1/n?) is thus
parallel to the z axis. In a like fashion we substitute the value of S” into (9.1-27) and
find that the corresponding eigenvector X" is parallel to the direction x + y while
using 5" shows that X" is parallel to x — y. Referring to the last two eigenvector
directions as x" and y', we can rewrite the equation of the index ellipsoid in the x',
¥', z (principal) coordinate system as

1 o 1 5
=~ reE ) x5 FrgE | ¥+
ng U

= 1 9.129)

12! !N
tal e

f
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where the quantities in parentheses are the eigenvalues given by (9.1-26). Equation
(9.1-29) is the same as (9.1-9).

9.2 ELECTROOPTIC RETARDATION

The index ellipsoid for KDP with E applied parallel to z is shown in Figure 9-2. If
we consider propagation along the z direction, then according to the procedure de-
scribed in Section 1.4 we need to determine the ellipse formed by the intersection
of the plane z = 0 (in general, the plane that contains the origin and is normal to
the propagation direction) and the ellipsoid. The equation of this ellipse is obtained
from (9.1-9) by putting z = 0 and is

(-]—2 = r'ﬁ3E:) x4+ (i2 + rf,;;E‘.) =] (9.2-1)
n, n,
One quadrant of the ellipse is shown shaded in Figure 9-2, along with its minor and
major axes, which in this case coincide with x’ and y’, respectively. It follows from
Section 1.4 that the two allowed directions of polarization are x' and y" and that
their indices of refraction are n,. and n,., which are given by (9.1-10) and (9.1-11).

We are now in a position to take up the concept of retardation. We consider an
optical field that is incident normally on the x'y’ plane with its E vector along the
x direction. We can resolve the optical field at z = 0 (input plane) into two mutually
orthogonal components polarized along x* and y’. The x' component propagates as

e, = Aei[m.r—tm’r:m_,.-:t

which, using (9.1-10), becomes

g 3. o
€. = Ae![aﬂ—{!r.i’f.')[ﬂr,“'[ﬂ".llerﬁ‘f‘.:I:} (92_2)
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Figure 9-2 A section of the index ellipsoid of KDP, showing the principal dielectric axes x’,
¥', and z due to an electric field applied along the z axis. The directions x' and y' are defined
by Figure 9-1.



